23 research outputs found

    A three-dimensional comparison of a morphometric and conventional cephalometric midsagittal planes for craniofacial asymmetry

    Get PDF
    Morphometric methods are used in biology to study object symmetry in living organisms and to determine the true plane of symmetry. The aim of this study was to determine if there are clinical differences between three-dimensional (3D) cephalometric midsagittal planes used to describe craniofacial asymmetry and a true symmetry plane derived from a morphometric method based on visible facial features. The sample consisted of 14 dry skulls (9 symmetric and 5 asymmetric) with metallic markers which were imaged with cone-beam computed tomography. An error study and statistical analysis were performed to validate the morphometric method. The morphometric and conventional cephalometric planes were constructed and compared. The 3D cephalometric planes constructed as perpendiculars to the Frankfort horizontal plane resembled the morphometric plane the most in both the symmetric and asymmetric groups with mean differences of less than 1.00 mm for most variables. However, the standard deviations were often large and clinically significant for these variables. There were clinically relevant differences (>1.00 mm) between the different 3D cephalometric midsagittal planes and the true plane of symmetry determined by the visible facial features. The difference between 3D cephalometric midsagittal planes and the true plane of symmetry determined by the visible facial features were clinically relevant. Care has to be taken using cephalometric midsagittal planes for diagnosis and treatment planning of craniofacial asymmetry as they might differ from the true plane of symmetry as determined by morphometrics

    Fungal Planet description sheets : 320–370

    Get PDF
    Novel species of fungi described in the present study include the following from Malaysia: Castanediella eucalypti from Eucalyptus pellita, Codinaea acacia from Acacia mangium, Emarcea eucalyptigena from Eucalyptus brassiana, Myrtapenidiella eucalyptorum from Eucalyptus pellita, Pilidiella eucalyptigena from Eucalyptus brassiana and Strelitziana malaysiana from Acacia mangium. Furthermore, Stachybotrys sansevieriicola is described from Sansevieria ehrenbergii (Tanzania), Phacidium grevilleae from Grevillea robusta (Uganda), Graphium jumulu from Adansonia gregorii and Ophiostoma eucalyptigena from Eucalyptus marginata (Australia), Pleurophoma ossicola from bone and Plectosphaerella populi from Populus nigra (Germany), Colletotrichum neosansevieriae from Sansevieria trifasciata, Elsinoë othonnae from Othonna quinquedentata and Zeloasperisporium cliviae (Zeloasperisporiaceae fam. nov.) from Clivia sp. (South Africa), Neodevriesia pakbiae, Phaeophleospora hymenocallidis and Phaeophleospora hymenocallidicola on leaves of a fern (Thailand), Melanconium elaeidicola from Elaeis guineensis (Indonesia), Hormonema viticola from Vitis vinifera (Canary Islands), Chlorophyllum pseudoglobossum from a grassland (India), Triadelphia disseminata from an immunocompromised patient (Saudi Arabia), Colletotrichum abscissum from Citrus (Brazil), Polyschema sclerotigenum and Phialemonium limoniforme from human patients (USA), Cadophora vitícola from Vitis vinifera (Spain), Entoloma flavovelutinum and Bolbitius aurantiorugosus from soil (Vietnam), Rhizopogon granuloflavus from soil (Cape Verde Islands), Tulasnella eremophila from Euphorbia officinarum subsp. echinus (Morocco), Verrucostoma martinicensis from Danaea elliptica (French West Indies), Metschnikowia colchici from Colchicum autumnale (Bulgaria), Thelebolus microcarpus from soil (Argentina) and Ceratocystis adelpha from Theobroma cacao (Ecuador). Myrmecridium iridis (Myrmecridiales ord. nov., Myrmecridiaceae fam. nov.) is also described from Iris sp. (The Netherlands). Novel genera include (Ascomycetes): Budhanggurabania from Cynodon dactylon (Australia), Soloacrosporiella, Xenocamarosporium, Neostrelitziana and Castanediella from Acacia mangium and Sabahriopsis from Eucalyptus brassiana (Malaysia), Readerielliopsis from basidiomata of Fuscoporia wahlbergii (French Guyana), Neoplatysporoides from Aloe ferox (Tanzania), Wojnowiciella, Chrysofolia and Neoeriomycopsis from Eucalyptus (Colombia), Neophaeomoniella from Eucalyptus globulus (USA), Pseudophaeomoniella from Olea europaea (Italy), Paraphaeomoniella from Encephalartos altensteinii, Aequabiliella, Celerioriella and Minutiella from Prunus (South Africa). Tephrocybella (Basidiomycetes) represents a novel genus from wood (Italy). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.Alina V. Alexandrova was supported by the Russian Science Foundation (project N 14-50-00029). Ekaterina F. Malysheva, Olga V. Morozova, Alexander E. Kovalenko and Eugene S. Popov acknowledge financial support from the Russian Foundation for Basic Research (project 13-04-00838a and 15-04-04645a). Margarita Dueñas, María P. Martín and M. Teresa Telleria acknowledge financial support from the Plan Nacional I+D+I projects No. CGL2009-07231 and CGL2012-3559. Cony Decock gratefully acknowledges the financial support received from the FNRS / FRFC (convention FRFC 2.4544.10), the CNRS-French Guiana and the Nouragues staff, which enabled fieldwork in French Guiana, and the Belgian State – Belgian Federal Science Policy through the BCCMTM research programme.http://www.ingentaconnect.com/content/nhn/pimjam201

    Application of cone beam computed tomography in facial imaging science

    No full text
    The use of three-dimensional (3D) methods for facial imaging has increased significantly over the past years. Traditional 2D imaging has gradually being replaced by 3D images in different disciplines, particularly in the fields of orthodontics, maxillofacial surgery, plastic and reconstructive surgery, neurosurgery and forensic sciences. In most cases, 3D facial imaging overcomes the limitations of traditional 2D methods and provides the clinician with more accurate information regarding the soft-tissues and the underlying skeleton. The aim of this study was to review the types of imaging methods used for facial imaging. It is important to realize the difference between the types of 3D imaging methods as application and indications thereof may differ. Since 3D cone beam computed tomography (CBCT) imaging will play an increasingly important role in orthodontics and orthognathic surgery, special emphasis should be placed on discussing CBCT applications in facial evaluations

    Simple technique to achieve a natural position of the head for cone beam computed tomography

    No full text
    We developed a modified laser level technique to record the natural position of the head in all three planes of space. This is a simple method for use with three-dimensional images and may be valuable in routine craniofacial assessment

    Comparison between two-dimensional and midsagittal three-dimensional cephalometric measurements of dry human skulls

    No full text
    The aim of this study was to compare two- and three-dimensional cephalometric values by using a three-dimensional analysis based on the midsagittal plane. Spherical metal markers were fixed on to the anatomical landmarks of 10 human skulls, which were examined radiographically with conventional lateral cephalograms and cone-beam computed tomographic (CBCT) scans. Preprogrammed analyses calculated the 18 angular and linear two- and three-dimensional cephalometric values. An error study was made to assess the accuracy and reliability of the methods used. Both sets of values were compared using Wilcoxon's signed-rank test. Probabilities of less than 0.05 were accepted as significant. Reliability of the measurements was assessed by intraclass correlation coefficients (ICC) based on absolute agreement. The method error (ME) was tiny (mean ME<0.61 measuring unit) and reliable (ICC>0.97). Comparison of the two- and three-dimensional measurements showed that that they were reliable (ICC>0.88) and that there were no significant differences (P=0.41-1.00). The values from the cephalometric analyses were comparable and interchangeable when using the midsagittal three-dimensional approach as described

    Practical limitations of cone-beam computed tomography in 3D cephalometry

    No full text
    3D cone beam computed tomography (CBCT) images offer a unique and new appreciation of the anatomical structures and underlying anomalies not possible with conventional radiographs. However, in almost all aspects of CBCT imaging, from utilization to application, inherent limitations and pitfalls exist. Importantly, these inherent limitations and pitfalls have practical implications which need to be addressed before the potential of this technology can be fully realized. The purpose of this review was to explore the current limitations and pitfalls associated with CBCT imaging to allow for better and more accurate understanding of the possibilities this imaging modality could offer, particularly pertaining to 3D cephalometry
    corecore